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Abstract
Cell-based therapy is a promising therapy for myocardial infarction. Endogenous repair of the
heart muscle after myocardial infarction is a challenge because adult cardiomyocytes have a
limited capacity to proliferate and replace damaged cells. Pre-clinical and clinical evidence has
shown that cell based therapy may promote revascularization and replacement of damaged
myocytes after myocardial infarction. Adult stem cells can be harvested from different sources
including bone marrow, skeletal myoblast, and human umbilical cord blood cells. The use of these
cells for the repair of myocardial infarction presents various advantages over other sources of stem
cells. Among these are easy harvesting, unlimited differentiation capability, and robust angiogenic
potential. In this review, we discuss the milestone findings and the most recent evidence
demonstrating the therapeutic efficacy and safety of the transplantation of human umbilical cord
blood cells as a stand-alone therapy or in combination with gene therapy, highlighting the
importance of optimizing the timing, dose and delivery methods, and a better understanding of the
mechanisms of action that will guide the clinical entry of this innovative treatment for ischemic
disorders, specifically myocardial infarction.
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Introduction
Myocardial infarction (MI) remains one of the leading causes of death. The resulting heart
failure from MI is preceded by a pathological cascade of events including the irreversible
loss of myocytes, scarring of the myocardial tissue, expansion of the infarct area, concentric
hypertrophy, and left ventricular dilation [1,2].

The repair of damaged cardiac tissue or vascular tissue may be achieved along with
improved myocardial function [3,4]. However, there is still a gap in clinical therapies for
MI. While there are native cardiac cells in the heart, their population levels remain too small
to make a therapeutic difference [5–7]. Transplantation for MI was first suggested in 1994
[8]. Although recent studies have indicated that injection of bone marrow mononuclear cells
aids in cardiac remodeling and guard against fibrosis [9], additional optimization laboratory
studies are warranted prior to initiating large-scale clinical trials of transplantation therapy
for MI. The use of adult stem cell (SC) for transplantation therapy has been demonstrated to
afford benefits in MI [10]. Accumulating preclinical evidence of safety and efficacy of SC
therapy for MI, and the entry of SC therapy to the clinic, provided the impetus for us to
update a review of the field [11].

Various types of cells have been discussed and tested as a potential therapy for the repair of
damaged myocardium. Hematopoetic progenitor cells have been shown to reduce apoptosis
[12,13]. Human amniotic epithelial cells have been demonstrated to differentiate in
cardiomyocyte-like cells following transplantation [14]. Mesenchymal stem cells (MSCs)
[15–19], skeletal muscle cells [20], skeletal myoblasts [21–24], endothelial precursor cells
[25] cardiac progenitor cells [26], and resident cardiac stem cells [27] have been
documented to enhance cardiac function and endothelial progenitor cells (EPCs) are being
studied for the same result [28]. However, there is disagreement over the optimal cell graft
for clinical application. Cultured MSCs from aging bone marrow display a lack of self-
renewal, proliferation, adhesion, and integration into vascular tissue when transplanted to a
damaged heart [29–31].

Autologous transplantation is currently a topic of much interest, as this therapy circumvents
graft-host immune disease. However, this method is not advantageous in aging and
chronically ill populations, who are functional SCs are reduced, limiting any recovery or
reparative ability of damaged tissue [29–31].

The limitations of various cells, including bone marrow derived MSCs, prompts exploration
of more suitable SC donor sources for transplantation in MI. Human umbilical cord blood
(HUCB) cells may overcome these limitations with favorable reparative outcomes,
particularly in the aged population where autologous cells are not as beneficial [32–36].
Their supply is much larger than that of the autologous cells, as HUCB cells are present in
the blood of umbilical cord, which are in ample supply and can be easily harvested; they can
also self-renew, proliferate, and differentiate into varying lineages. Furthermore, HUCB
remain viable even after long periods of cryopreservation [13,15,16,21,25]. The risk of
losing protein signaling and damaging other protein is minimal in HUCB cells
[4,13,15,16,21,25,27–37].

The survival of transplanted HUCB and their differentiation into myocytes or endothelial
cells appear necessary, at least acutely, to promote left ventricular remodeling [38–53].
However, the extent and stability of efficacy of HUCB cells for repair of MI require more
preclinical investigations, along with the need to elucidate the mechanism through which the
cells contribute to myocardial repair [3,54]. Table 1 reviews the literature by dosage and
delivery route. Optimizing the HUCB cells transplantation regimen for the amelioration and
repair of the failing heart post-MI is a key translational research goal for this evolving area
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of research. Additionally, this update serves as an evaluation of the mechanisms of action
mediating the therapeutic benefits of HUCB cells in MI may reveal insights on the
reparative capacity of the cells.

Benefits of Utilizing HUCB
HUCB cells have several properties that make them advantageous for cell transplantation
therapies over other sources. Unlike bone marrow and embryonic derived SCs, harvesting
HUCB cells is non-invasive and does not put the mother or the infant at risk [55,56]. These
cells can be cultured to an unlimited supply, avoiding numerous ethical issues that plague
other SCs [57,58]. To harvest the HUCB cells, a physician clamps the umbilical cord and
punctures the umbilical vein with a syringe to draw out blood into a bag with anticoagulants
and nutrients. The blood is cleaned of infectious agents prior to cryopreservation and finally
stored in a blood bank for future use [59]. Once harvested, HUCB cells can easily
proliferate, and be indefinitely cultured [57,58,60].

Cryopreservation does not hinder any proliferation potential, making HUCB cells viable and
long lasting [59]. Furthermore, cryopreservation raises the amount of retroviral receptor
mRNA in cord blood increasing its ability to transduce retroviral vectors. This enhanced
amphotrophic retroviral receptor expression facilitates the utility of, gene therapy as these
receptors are a central target for transduction of genes of interest [61].

HUCB is also a richer source of hematopoietic stem and progenitor cells with higher
proliferation and expansion potential than bone marrow [62–65]. There is approximately 4%
higher frequency of CD34+, CD38−, and CD133+ cells in primitive hematopoietic SCs
derived from HUCB than in bone marrow [32,66,67]. These findings suggest the higher
benefits transplantation of HUCB could yield of bone marrow.

One of the biggest challenges in cell based treatment and transplantation is to overcome
graft rejection. HUCB cells have the benefit of having immature immunogenicity,
suggesting that these cells will have a lower incidence of graft-versus-host disease as
compared to other varieties of SC [31,56,62, 68–71]. Recently, researchers discovered that
HUCB contains a small percentage of very small embryonic-like SCs (VSELs) another
source of pluripotent SCs [72–74]. Additionally, it has been shown that HUCB cells possess
the ability to repair muscle cells and endothelial cells due to their myogenic and angiogenic
properties, indicating that they would be well suited for repairing damaged myocardium
[33–41,43–45,49,55,57]. HUCB cells have a long track record of safety profile in successful
clinical transplantation [58,59,75]. Altogether, these advantages support the notion that adult
SCs provide a high level of safety and efficacy to the transplant recipient.

HUCB Mechanisms of Cardiac Repair
There is still much uncertainty for the exact mechanism by which HUCB cells ameliorate
cardiac deficits or how they reduce infarct volume. The various populations of SCs found in
the HUCB highlight multi-pronged mechanisms. Immunophenotyping and analysis of the
function properties reveal a close resemblance to bone marrow-derived SC characteristics
[76,77], that led to much speculation that HUCB cells resemble bone marrow SCs.
However, the exact mechanisms of action underlying the beneficial effects of the HUCB
cells are unknown; below are a few of the more common postulated therapeutic pathways.

Cellular Cardiomyoplasty
Cellular cardiomyoplasty may result in improvement and reversion of the adverse
hemodynamic and neurohormonal imbalance post MI. HUCB is a rich source for HSCs and
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MSCs, which specifically are known to differentiate into other cell types such as
cardiomyocytes, osteocytes, chondrocytes, and fat cells [4,32,60,78]. That SCs from HUCB
can differentiate into cardiomyocytes suggests that cellular cardiomyoplasty is likely
involved in the repair damaged myocardium and increase contractile performance after SC
transplantation [13,40,41,45,69, 76,77,79–84].

HUCB-derived MSCs have been shown to regenerate into cardiomyocytes in vitro. Using a
medium of low serum DMEM to form an adherent layer, the expanded HUCB cells were
added to a supplemented medium with 5-azacytidineto induce cardiomyocytes. To identify
cells similar to cardiomyocytes, cardiogenic specific contractile protein troponin T staining
was performed, revealing 70% of the cells had differentiated into cardiomyocyte-like cells
[85]. A similar study analyzed the role of HUCB CD133+ cells by culturing them either in
medium supporting endothelium-differentiation or cardiomyocyte-differentiation
endothelium markers such as VE-cadherin, CD146, KDR, and CD105, as well as
morphofunctional features of endothelium in endothelial-supporting cultures of cardiac
muscle proteins such as troponin I and myosin ventricular heavy chain alpha/beta; MYHC
were discovered in the endothelium-oriented cultures. In the cardiomyocyte-oriented
cultures, specific gene expression of GATA 4, NKX2.5, troponin I, and MYHC were found.
Thus, HUCB CD133+ cells have been implicated to promote myogenesis and angiogenesis
[86].

Cardiomyocyte differentiation of HUCB has been induced in vitro [85–89]. One novel
approach for directing cardiomyocyte differentiation examined the creation of a culture
medium containing different signaling factors in sequence. To reveal cardiomyocyte-like
phenotype in HUCB CD133+ cells, the authors demonstrated the expression of intracellular
cardiac specific makers such as cardiac-specific α-actin, myosin heavy chain, and troponin I.
Additional tests revealed that the phenotypic change in these HUCB cells was associated
with specific gene expression of transcription factors for Gata-4 and MEF2C, and nuclear
receptor transcription factors including PPAR α, PPARγ, RXR α and RXRβ [87].

Induction of differentiation of HUCB cell into cardiomyogenic cells was also achieved by
culturing them in DMEM medium supplemented with fetal bovine serum, epidermal growth
factor, insulin, and 5-azaytidine. HUCB cell differentiation into cardiomyocytes was
detected through their expression of different cardiac muscle proteins such as troponin T and
myosin ventricular heavy chain alpha/beta (MYHC) and specific gene expressions such as
GATA4, NKX2.5, troponin I [90]. The cardiac differentiation of HUCB-derived MSCs was
facilitated by 5-Azacytidine treatment, which activated extracellular signal related kinases
(ERK), but not protein kinase C [91]. Furthermore, sphigosine-1 phosphate (S1P), a native
circulating bioactive lipid metabolite, promoted the differentiation of HUCB MSCs into
cardiomyocytes under cardiac myocytes conditioning medium (CMCM). A cardiomyocyte-
like shape, and expression of a-actinin and myosin heavy chain (MHC) proteins were both
observed in CMCM or CMCM+S1P culturing groups after 5 days of culturing, revealing
that only the cells in CMCM+S1P culture condition were able to form cardiomyocyte-like
action potential and voltage gated currents [84]. Several other studies support the
differentiation potential of HUCB cells [7,38,39,49,85,91–95].

Cardiomyocyte regeneration has also been induced via direct injection of HSCs [13] while
cardiomyocyte differentiation has been stimulated via co-culturing with adipose tissue-
derived cells [89]. Transplanted HUCB cells express cardiac-specific markers troponin I and
cardiac myosin, suggesting differentiation into cardiomyocytes. Additionally, this HUCB-
adipose cell co-culturing system reconstituted infarcted myocardium more efficiently than
non-co-cultured cells [52]. Of note, the induction of HUCB cells to differentiate into
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cardiomyocytes has been shown to exert much more improved functional effects over non-
differentiated cells in vitro and after transplantation [52,85–87,89].

While many studies present positive results following transplantation of SCs derived from
the HUCB or bone marrow [97,98], this therapy is being questioned, specifically for the
cells’ transdifferentiation potential [52,73,99]. HSCs labeled with enhanced green
fluorescent protein exhibited no visible transdifferentiation into cardiomyocytes, nor any
significant increase in cardiomyocytes between cell grafted hearts and sham hearts [99].
Furthermore, there is no evidence of cardiomyocyte differentiation of HUCB cells injected
post MI either via IV injection or IC delivery [56,98]. A more recent study showed low
frequency levels of differentiation of HUCB MSCs, suggesting they are not ripe for infarct
repair [100]. A study comparing the results of differentiated versus non-differentiated cells
vis-à-vis revealed no significant difference in cardiac improvement between the two groups
[101]. While these studies have questioned the use of these cells, they also suggest that
perhaps the therapy is not entirely dependent on cellular cardiomyoplasty. An in vivo model
revealed bone-marrow transplanted cells fused with cardiac muscle [92], suggesting that this
fusion of host and transplanted cells may result in genetic transfer and thus rejection. A
more recent study analyzed HUCB CD34+ cells co-cultured with neonatal ventricular
myocytes for the presence of cardiomyocyte properties using a reporter gene system to
determine whether cardiac transformation is due to differentiation of the cells or cellular
fusion. Interestingly, this co-culturing system led to cell fusion, and therefore the cells
expressed the myocyte features by accumulating the cardiac physiological genetic properties
[90]. However, equally compelling evidence has refuted the notion of cell fusion, in that
gender-specific bone marrow-derived cell grafts in experimental mouse MI revealed male-
originated cells, ruling out cell fusion [93]. Due to these inconsistencies, future studies are
warranted to clarify whether cellular cardiomyoplasty truly improves cardiac function
following HUCB transplantation into the infarcted myocardium.

Angiogenesis
Another possible reparative mechanism is SC-induced angiogenesis in the ischemic area
after MI. Numerous studies have shown that transplanted HUCB cells increased the
neovascularization in the infarcted myocardial, and improved cardiac function [38,43,45–
47,49,58,64,65,102]. This neovascularization is suggested to trigger the native and
endogenous cells of the myocardium to proliferate and regenerate, as well as to protect
against the apoptosis of the ischemic regions. A major promoter of this neovascularization is
HO-1, a known cytoprotective enzyme in angiogenesis, paired with carbon dioxide, which is
demonstrated to influence cardiac regeneration post MI [103]. The CO2 aids in
vasculogenesis by activating c-kit+ stem/progenitor cells and increasing the differentiation
of SCs to form new arteries and cardiomyocytes through the creation of growth factor
HIF-1α, SDF-1α and vascular endothelial growth factor-B (VEGF-B) expression. However,
the HO-1 relies on the CO2 to promote angiogenesis by inducing SDF-1α expression only,
indicating that HO-1 and CO have potential to enhance cardiac regeneration [103]. The graft
deposition may influence the resulting neovascularization in that HUCB-derived EPCs
following transplantation were ingrained in the myocardium wall which was found to
display robust neovascularization, suggesting that transplanting the cells into the capillaries
could induce revascularization [105]. These studies altogether support that angiogenesis may
mediate the improved cardiac function following transplantation of HUCB-derived SCs.

Paracrine Effects
Paracrine effects refer to communication between adjacent cells mediated by the action of
regulatory molecules, such as growth factors and cytokines. These effects may play a crucial
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role in improving left ventricular function following SC transplantation. Much evidence
supports the idea that paracrine factors from SCs transplanted into the myocardium
contribute to left ventricular remodeling and function [39,105,106].

Increased vascular endothelial growth factor (VEGF) mRNA expression was detected at 7
and 27 days post HUCB cell transplantation, which was found to coincide with increased
microvasculature near the infarct boundaries [50]. Additional angiogenic factor expression
(fibroblast growth factor, VEGF, and SC homing factor SDF-1) was observed in engrafted
MSCs two weeks post transplantation, increasing capillary density 40%. The left ventricle
exhibited an improved contractile function at eight weeks post transplantation, suggesting
that growth factor secretion improved cardiac function [105]. Enhancing the expression of
Ang1 and VEGF in HUCB CD34+ cells resulted in a further reduction of infarct volume and
robust increment in capillary density, suggesting further the role of paracrine effect in
improved cardiac function [49]. This initial paracrine effect was also shown to trigger a
multitude of therapeutic pathways, in that by increasing angiogenesis, reducing collagen
content and thus changing the extracellular matrix, it culminates with an enhanced
recruitment of endogenous myofibroblasts [49].

Similarly, the HUCB-mediated paracrine effect is exerted by bone marrow-derived MSCs
co-injected with adeno associated virus (AAV) expressing VEGF, which led to improved
therapeutic effects characterized by reduced infarct volume, recovery of cardiac function,
neovascularization, and increased MSC survival 50-fold [106]. However, MSC
differentiation into cardiomyocytes was not detected, and only a few surviving MSCs were
observed when singularly injected [106]. Nonetheless, despite this low MSC differentiation
potential and graft persistence, infarct size was still reduced, suggesting that the MSC-
secreted paracrine factors is likely the alternative mechanism of functional repair in MI
Indeed, GATA-4 increased MSC survival, promoted neovascularization, and enhanced
cardiac recovery by upregulating IGF-1 and VEGF in the MSCs [39].

The overexpression of the angiogenic factors not only promoted neovascularization, but
improved several parameters of cardiac function including fractional shortening, tissue
velocity, and wall motion score index [94]. In tandem with increased neovascularization,
elevated angiogenic factors promoted myogensis, vasculogenesis, and anti-apoptotic effects
within the injured myocardium, the major deposition site of the transplanted SCs. The latter
is indicative that both migration and paracrine secretory properties of the SCs may interact
to produce therapeutic benefit in MI. This combined therapeutic pathway involving cell
migration and paracrine secretion is also shown to rescue the scarred tissue as evidenced by
improved cardiac function at 4 weeks post MSC injection. However, 6 weeks post injection,
no benefits of myogenic differentiation were observed [7], suggesting that cell migration at
the early stage is important for treating MI.

Anti-Inflammation
Transplanted HUCB cells have the ability to attenuate the ischemic-induced inflammatory/
immune response in the infarcted heart, representing another intriguing potential repair
mechanism [51,105,108]. Increasing evidence indicates that HUCB-derived MSCs secrete a
variety of pro- and anti- inflammatory cytokines that directly act to limit deleterious and
permanent endogenous inflammation of the heart [105]. Similarly, injection of HUCB cells
into infarcted myocardium of non-immunosuppressed rats, within 2h or at 24h following left
anterior descending coronary artery (LAD) occlusion, resulted in reduction of infarction
sizes 1 month later [51], concomitant with a significant change in myocardial concentrations
of tumor necrosis factor-alpha (TNF-alpha), monocyte/macrophage chemoattractant protein
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(MCP-1), monocyte inflammatory protein (MIP), and interferon-gamma (INF-gamma) as
compared to control animals at 2, 6, 12, and 24h after coronary occlusion [51].

More recently, an investigation of the immunological/inflammatory responses by the host to
implanted bone marrow mesenchymal SCs (BMSC), cultured on silk fibroin/hyaluronic acid
(SH) patches [108], suggests that modulation of inflammatory responses is achievable
through transplantation of HUCB-MSC, which display similar stem cell phenotypic and
functional properties as BMSC. In response to BMSCs, expression of CD68 (macrophage
marker) was not detected in the MI zones exposed to the SH patches when compared to non-
SH patch-exposed MI zones. The SH patches provided an anti-inflammatory effect, and
application of SCs with SH significantly improved wall thickness of LV, had a high viability
of delivery of BMSC, largely reduced apoptosis, and significantly promoted neo-
vascularization and stimulated VEGF secretions and various other paracrine factors [108].
That HUCB-MSC may also modulate inflammatory responses could attenuate the secondary
wave of ischemic damage after the MI.

While these represent some of the more widely accepted MI mechanisms, either a singular
or combination of known and unknown factors, identifying the exact mode of action
underlying the functional effects of cell therapy in MI requires more investigations. Future
experiments should consider these therapeutic pathways in designing HUCB transplantation
therapy for MI.

Delivery Routes and Preclinical Outcomes
Although published data about transplantation of HUCB cells into the heart is still in its
early stages, animal models of MI have already demonstrated that several delivery routes
can be used to successfully transplant these cells effectively and safe. Among the most
common delivery methods for transplantation are intramyocardial, intravenous (IV), and
intracoronary (IC) injections [38, 46,51,52,54, 109].

Intramyocardial injection
Intramyocardial injection are injection performed directly into the myocardium
[38,46,51,52]. This direct administration of cells into the damage heart muscle has proven to
be more effective than indirect methods. Comparing indirect and direct delivery methods,
intramyocardial injection significantly reduced the infarct size area as compared to indirect
methods of HUCB cell delivery [110]. Although this method is preferred, there are some
disadvantages that need to be taken into consideration before delivering the cells. This
procedure only allows a very small amount of cell to be delivered, and it is an invasive
procedure. Intramyocardial injections require open heart surgery in order to deliver the cells
directly to the infarcted heart [54]. Additionally, there is the risk for possible
arrthymogenicity.

Even though this delivery method has some disadvantages, preclinical studies have shown
promising results for myocardial repair utilizing this method. Improved diastolic pressure
and cardiac function were achieved in an animal model of intramyocardial injections of
HUCB cells of different populations, such as CD34+KDR+ or CD34+KDR− cells on non-
obese diabetic-severe combined immunodeficiency mice or NOD-SCID mice at 24hours
after LAD. About 200,000 cells of CD34+KDR+ significantly improved left ventricular
diastolic pressure after MI relative to control injection of PBS or mononuclear cells.
Histology analyzes reveal limited number of newly formed cardiomyocytes in the area of
injury. Overall, this study was able to successfully use direct method of delivery in
identifying the therapeutic subfraction within the CD34+ population [38].
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Similar studies have supported the therapeutic role of transplanting HUCB cells directly into
the heart, showing improvements of ventricular function following intramyocardial injection
of HUCB cells after MI. Using different immunofluorescent tags, HUCB cells injected
directly into the heart survived in the myocardium, increased neovascularization and
improved cardiac function at 4 weeks after transplantation. These results suggest the large
therapeutic potential of HUCB cells when delivered directly to the damaged myocardium
[41,46].

Another study injecting HUCB cells directly into the damaged myocardium was found to
improve left ventricular function in a rat model of MI [40]. About 106 HUCB mononuclear
progenitor cells were injected into the myocardium 1 hour post LAD ligation. There were no
significant differences in ejection fraction after 1 month between the group injected with
HUCB and PBS. However, after 3 and 4 months, the anteroseptal wall, from HUCB-treated
rats, was significantly thicker relative to control rats. In addition, a significantly robust
reduction in infarct size was achieved in the heart of HUCB injected rats [40], showing the
long term effects of HUCB transplantation.

Arteriole and capillary density increased at 4 weeks after transplantation of unrestricted
human somatic stem cells (USSCs) derived from the HUCB into the myocardium. To
determine whether these cells truly enhanced regeneration through differentiation, markers
like cardiac troponin-T, smooth muscle actin, and von Willebrand factor were used for
analysis. USSCs were shown to express each marker, indicative of cellular differentiation
into cardiomyocytes, smooth muscle cells, and endothelial cells respectively. Using the
direct delivery of USSCs, this study supports the theory of cardiomyoplasty [49].

Additionally, transplanting HUCB cells, using direct delivery method of intramyocardial
injection, a study was able to support the angiogenic potential of HUCB cells after MI as a
possible repair mechanism. In this study, HUCB cells were transplanted immediately after
MI. After 4 weeks from transplantation, there was a significant increase of the vascular
endothelial growth factor or VEGF 164 and VEGF 188 [50]. Intramyocardial injections of
HUCB cells were also found to attenuate the inflammatory immune response after MI [51].
To further augment the host inflammation associated with MI, a collagen matrix with HUCB
cells grafted directly onto the infarcted area improved survival as well as cardiomyoplasty
[53].

Studies that are more recent further support the intramyocardial injection as an effective cell
delivery system. HUCB cells were injected into one or two positions of the myocardium
near the edge of the infarct area in rats [110]. Three weeks after implantation, HUCB cells
were detected using nuclear staining primarily in the border of the infarct area, suggesting
that the cells have the potential to survive for at least three weeks following implantation. As
shown in earlier studies, these results also reveal amelioration of cardiac functioning after
direct transplantation of HUCB cell into the myocardium after [42–44].

Moreover, in order to find an optimal dose for the direct delivery method, an MI rat model
was used. Rats were injected with HUCB cells into the peri-infarct zone in a dose-dependent
manner in a series of 6 × 10 μL injections of 1 × 105 (considered the low dose, or LD), and 1
× 106 (considered the high dose, or HD) of HUCB cells [59]. The effects of the cells were
analyzed from 5 to 28 days following transplantation. At day 5, there were no differences
across the groups. However, the cells considerably contributed to the maintenance of left
ventricular (LV) structure based on percent of fibrosis, and a number of other measurements.
On day 28, capillary density related to myocardial neovascularization was enhanced in both
dosage groups, as was left ventricular wall motion in comparison to the non-treated group.
On day 23, fractional shortening (FS) was higher in the HD group, but not significantly

Acosta et al. Page 8

J Stem Cell Res Ther. Author manuscript; available in PMC 2013 December 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



different than the LD group. In contrast, a lower regional wall motion score (RWMS) was
observed in the LD and HD groups indicating a better protection in the treatment groups.
Analysis of +dP/dt to assess left ventricular contractility revealed that the HD group levels
were significantly greater than the LD group, with even lower levels found among the
untreated groups [112]. After four weeks, left ventricular end diastolic pressure (LVEDP)
was lower in both HD and LD groups. In addition to suggesting the cells improved cardiac
functioning, the study found that HUCBs differentiated into human cardiomyocytes (CMCs)
in a dose-dependent manner [112]. Altogether, these studies using the direct delivery
method to transplant HUCB cells demonstrated promising results for the treatment and
repair of the failing heart after MI.

Intravenous injection
Intravenous injection of HUCB cells offers a less invasive cellular delivery system than
intramyocardial injection. Studies using animal models of stroke have revealed that
transplanted cells through, systemic administration, are able to migrate to the ischemic site
of injury, and may contribute to the improvement of behavioral deficits [33–36]. However,
systemic administration may cause these SCs to aggregate in different organs before
reaching the injured site. In fact, it has been shown that only a fraction of these cells reach
the site of injury due to the aggregation of the cells within the microvasculature of the liver,
lungs, and lymphoid tissue [54]. Additionally, shortness of breath and death due to
pulmonary embolisms has been noted with this procedure [112]. Despite some controversy,
IV administration of HUCB cells is still studied by many pre-clinical scientific groups to
further asses its beneficial effects as an indirect route of delivery and to further improve its
outcomes [42,43,48,51].

In a study injecting HUCB cells into the tail vein of mice induced with MI from an LAD
ligation, cell migration, cell survival and infract size were characterized in order to assess
the efficacy of IV delivery [42]. Organ analysis of mice showed detectable levels of hDNA
after 24 hours, 1 day, and 3 weeks following transplantation; no sham animals were
observed with hDNA. However, hDNA was not completely detected in all mice with MI
(only 10/19). MI mice showed an abundance of HUCB cells in the perivascular interstitium,
while having a reduced infarct volume compared to the sham animals. Furthermore, there
was significant infarct reduction in the MI as well as 20% higher capillary density around
the infarct area border. There was no decrease in collagen deposition between the two
groups. Co-localization of HNA or HLA-I with GATA-4 or Connexin 43 showed no
evidence of HUCB mononuclear cells differentiation into cardiomyocytes. The expression
of SDF-1 mRNA on the MI+ mouse was approximately 7-fold higher than the MI− group
[42]. In a parallel study, the migration and survival of HUCB mononuclear cells following
IV transplant were trackedand revealed cell aggregation, but it is not consistent in all
injected mice [43]. Cell migration to the heart was detected only in MI mice and not sham
mice, proposing a signal-induced migration by damaged or injured tissue [43].

Another cell tracking study demonstrated the migration of HUCB-derived CD133+ cells
when IV delivered at seven days after permanent coronary artery ligation in rats [48]. One
month post transplant, lateral ventricle fractional shortening improved relative to control
mice. Only control animals presented thinning of the anterior wall of the heart. Following
tracking the migration of the cells, it was revealed they colonized and survived in the
infarcted myocardium. The cells in the nearby vessel walls were determined to be of human
origin, while scar tissue indicated autologous myofibroblasts and alpha-smooth muscle. This
study supports IV administration as an adequate strategy for HUCB cell transplantation,
allowing effective migration of the cells to the area of injury where they subsequently
induce autologous differentiation for repair of infarcted myocardium [48].
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Another important factor for IV delivery of HUCB cells is timing, notably that endogenous
signals are able to guide the migration of the cells to the infarct area. An in vivo study found
that the greatest migration of IV administered cells to MI region was between 2 hours to 24
hours after LAD occlusion [51]. Protein characterization revealed increase cytokine and
chemokine production in this time. In particular, stromal cell derived fator-1 (SFD-1) was
highly up-regulated in the infarcted area of the myocardium. SFD-1 is a chemokine that
attracts circulating SCs via CXCR4, integrating activation of integrins in the vasculature
[78].

Accumulating preclinical studies have shown the significant clinical relevance that IV
administration of HUCB cells has for the treatment and repair of the infarcted heart. In a
recent study, the effectiveness of IVdelivery method for HUCB cell base therapy has been
analyzed at different points in time following MI [113]. Four transplants of equal amounts
were IV administered at days 1, 5, 10, and 30 following the MI, and the effects of the cells
were analyzed using echocardiographic assessment. It was found that in 5 and 10-days
following transplants, rats had significantly increased left ventricular ejection fraction
(LVEF) as compared to the control group, whereas the LVEDD and LVESD levels were
significantly smaller in the treatment group. Moreover, left ventricular wall thickening was
most notable and significant in the 10-day transplantation group. Scar tissue area was
reduced in the 5-day group and in the 10-day group relative to the PBS control group. At
both time points, microvascular density was larger than the control group, with the 10 day
point having the larger area. VEGF levels were higher in the 10 day group than any other as
well. At this 10 day time point, the largest concentration of HUCB cells within the infarct
area was found, which correlated with the higher VEGF levels [113]. Future studies are
warranted to assess the long term potential of the reparative capacity of HUCB cells.

Intravenous delivery of different types of cells derived from HUCB was also examined; in
particular comparing the efficacy of injecting post MI expanded HUCB cells with that of
non-expanded HUCB cells. Two days post MI, 106 expanded and non-expanded HUCB
cells were injected into the tails of rats. No detectable differences between the groups were
observed at two days post injection, and there was no significant difference in cardiac
function at two weeks (analyzed using LVEF). (61 ± 5.9% and 64 ± 4.1%, respectively).
Four weeks post IV administration, cardiac function appeared to be improved, but there was
still no statistical difference [114]. This study suggests that there were no functional
differences between expanded versus non-expanded HUCBs. Although more studies are
needed to further test the efficacy of expanded SCs, these results showed that HUCB cells
can be expanded in vitro without losing their functional activity [114, 115].

Despite negative controversial results, especially the formation of embolus using IV
administration of HUCB cells, these studies support the concept that the minimally invasive
IV administration faciliated HUCB-derived SCs to migrate to infarcted area and ameliorate
cardiac function [78].

Intracoronary delivery
SC transplantation can also be achieved using the IC delivery method. This method allows
delivery of SCs directly into the damaged myocardium without passing through systemic
circulation However, the possibility of cell aggregation is very high in IC injection,
especially if a large amount of cells are delivered in the catheter [60,116] Yet, over the last
decade, several studies have shown a good safety profile of IC injection of bone marrow and
peripheral blood-derived mononuclear cells [42,44,54,116–119].

The IC route of SC delivery is the least commonly used in MI animal models. After 5 weeks
from treatment, it was concluded that LV was not ameliorated, infarcted area was not
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reduced, and surviving cells did not express cardiomyocytes or endothelial markers [98].
Histological analyses revealed that IC injection caused micro-infarctions due to obstruction
of blood vessels likely due to the large amount of cells injected (108) [98]. More pre-clinical
research needs are warranted to evaluate the efficacy and safety of IC delivery of HUCB for
transplantation in MI.

HUCB, Gene Therapy, and Other Novel Techniques
As noted above, HUCB cells for myocardial repair and revascularization following MI
offers a glimpse of hope as an alternative therapeutic option. A major caveat in realizing the
successful outcome of HUCB transplantation for MI is overcoming delivery of the cells or
the cells’ nutritive substances (angiogenic, trophic and anti-inflammatory factors) to the
non-conducive environment of the ischemic heart. Genetically modifying SCs may
circumvent the technical problems of cell delivery and hostile environment associated with
ischemic diseases [95,120–123].

Previous studies on SC therapy for MI reveal potential for the combined use of gene therapy
with HUCB cells. Adeno associated viral vectors (AAVs) were used to transduce angiogenic
factors to the heart. Human ang1-alone, VEFG (165) alone or a combination with AAVs
were transduced to CD34+ cells and injected intramyocardially immediately after ligation of
the left anterior descending coronary artery in male SCID mice to infarcted ventricles [47].
Four weeks following gene delivery, protein analysis confirmed the upregulation of ang-1
and VEGF or both in the CD34+ transduced groups. The results showed a significant
decrease of the infarct size, and a significant increase in capillary density relative to control
(treatment with CD34+ alone) in all treatment groups (AAV-ang-1, AAV-VEGF, or AAV-
ang-1+VEGF). In terms of cardiac functioning, echocardiography assessment showed
significant amelioration on cardiac performance [47]. The results demonstrated the utility of
viral vectors and SCs for the repair of myocardial infarcted hearts.

Additional gene-based techniques have been explored to improve the therapeutic potential of
HUCB MSCs [123]. In order to effectively engraft these cells, spherical three-dimensional
(3D) bullets made of cultured cells in anchored-deprived media were created to deliver
MSCs to the heart. This treatment was shown to improve left ventricular contractility, lessen
fractional shortening, and decrease and prevent pathologic left ventricular dilation when
compared to single cell treatment [123]. The efficacy of MSCs increased once the spherical
bullets formed, allowing for cell to cell interaction, inducing E-cadherin, which is essential
to the bullet formation, activating and initiating the cascade of proliferative angiogenic
pathways and increasing the endogenic potential of the cells. Overexpression of E-cadherin
revealed secretion of VEGF, which probably induces the angiogenic pathways. The same
concept was used for core-shell bodies, where MSCs are combined with endothelial cells
from the umbilical cord vein. Results revealed MSCs differentiated into smooth muslces and
there was a robust excretion of VEGF [124]. Both of these concepts represent a new field of
genetic manipulation for enhancing the therapeutic effects of HUCB-derived cells.

Microporation has also been employed to increase efficacy of the MSCs. The technique
transduces plasmid DNA into the HUCB-derived cells. Minimal cell damage occurred when
brain derived neurotrofic factor (BDNF) was successfully transduced via microporation,
wherein immunophenotype, proliferation, and differentiation activity of HUCB-MSCs was
not affected when migrating toward brain cancer cells [95]. The study highlights the use of a
reliable transduction technique, which further studies could use to transfer trophic factors to
muscle tissue of the failing heart ventricles without altering the beneficial effects of SC
transplantation therapy.
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Although the translational potential of genetic manipulation of HUCB cells is in its infancy,
it stands as an innovative approach in overcoming limitations of cell delivery. Further
studies are warranted to test the safety and efficacy of combined gene and cell therapy.

Conclusion
Cell-based remains an experimental treatment for MI. Historically, the use of HUCB cells is
circumvents the ethical concerns associated with embryonic SCs use due to their source and
method of acquisition. Animal models of hearing loss, Parkinson’s disease, Alzheimer’s
disease, stroke, and Huntington’s disease have also evaluated the therapeutic medical value
of HUCB cells. Due to the uniqueness of the diseases, tailored cell therapies to target each
disorders may be required to achieve clinical improvement [34–36,38,40,122]. Several pre-
clinical studies strongly support the use of HUCB cells for the therapeutic treatment of MI.
However, additional research is still necessary to establish HUCB cells as a safe and
effective cell–based approach to for use in MI patients.

Many studies emphasize the importance of the optimal timing of HUCB administration, as
this timing assures higher rates of engraftment, survival, and differentiation compared.
Transplantation acutely after the initial injury could decrease cell survival due to the release
of inflammatory cytokines, while transplantation at the chronic stage could mean rampant
scarring that may prevent graft-host signaling pathways necessary for directed cell migration
and differentiation, as well as appropriate paracrine secretion. A careful examination of the
literature reveals that transplanting HUCB cells as early as 24 hours after MI ameliorates
ventricular function and contractility [38,40–42,47,49,50], and, on the other side, cell
transplantation even at 4 weeks post MI has been shown to afford a general improvement of
heart function [46,49]. Therefore, it is necessary to conduct vis-à-vis comparative studies in
order to find an optimal time frame with the most therapeutic benefit that has direct clinical
application.

Disagreement also exists over the optimal number of transplanted cells: the studies show
both a variety of doses, and quantity of transplanted cells [38,40–43,45–53]. It is essential to
determine an optimal dose response in an effort to standardize the HUCB dosage, which
should coincide with high therapeutic value for MI and ventricular repair in cardiac failure.
Table 1 organizes the current studies by dosage.

Although HUCB has less immunogenicity issues, graft rejection needs to be monitored to
ensure successful transplant outcome. In most studies, HUCB cell transplantation revealed a
very attractive option as the treatment was effective in MI rat models without the need for
immunosuppression [40–43,45,47,48]. However, studies tended to only follow the fate of
the HUCB grafts for very short time periods, from 2 weeks to 4 months being the average
time points, suggesting the need to observe the cells under longer-time periods in order to
fully determine the need for immunosuppression and the presence of functional recovery.
An additional concern and important study that needs to be performed is a long-term follow
up of HUCB migration as the cells could move through the heart vasculature to other
organs.

Finally, while SC engineering may enhance tissue repair capabilities, their ability to migrate
to the target tissue and their capacity to differentiate or exert paracrine effects require
elucidation to harness cellular and molecular pathways of exogenous and endogenous repair
mechanisms. Although still a novel technique, studies support the notion that gene therapy
and HUCB cells could overcome many transplantation challenges or improve the HUCB
potential by either enhancing or ameliorating the delivery of trophic factors or by increasing
their differentiation potential for the treatment of ischemic diseases as MI and stroke
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[47,94,95,106,123]. However, gene therapy itself may pose a novel set of safety and efficacy
issues that require similar optimization and standardization preclinical studies.

HUCB cells continue to garner preclinical data furthering our basic science of stem cell
biology but also providing insights into the translation of cell-based therapeutics for the
amelioration of MI and other ischemic disorders.
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Abbreviations

MI Myocardial Infarction

SC Stem Cells

MSCs Mesenchymal Stem Cells

EPCs Endothelial Progenitor Cells

HUBC Human Umbilical Cord Blood

VSELs Very Small Embryonic-like Stem Cells

MYHC Mmyosin Ventricular Heavy Chain Alpha/Beta

ERK Extracellular Signal Related Kinases

S1P Sphigosine-1 Phosphate

CMCM Cardiac Myocytes Conditioning Medium

MHC Myosin Heavy Chain

VEGF-B Vascular Endothelial Growth Factor-B

VEGF Vascular Endothelial Growth Factor

AAV Adeno Associated Virus

LAD Left Anterior Descending Coronary Artery

TNF-alpha Tumor Necrosis Factor-alpha

MCP-1 Monocyte/macrophage Chemoattractant Protein

MIP Monocyte Inflammatory Protein

INF-gamma Interferon-gamma

BMSC Marrow Mesenchymal SCs

SH Silk Fibroin/hyaluronic Acid

IV Intravenous

IC Intracoronary

USSCs Unrestricted Human Somatic Stem Cells

LV Left Ventricular

FS Fractional Shortening
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RWMS Regional Wall Motion Score

LVEDP Left Ventricular End Diastolic Pressure

CMCs Cardiomyocytes

SFD-1 Stromal Cell Derived Fator-1

LVEF Left Ventricular Ejection Fraction

AAVs Adeno Associated viral Vectors

3D Three-Dimensional

BDNF Brain Derived Neurotrophic Factor
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