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ABSTRACT

Acute renal failure (ARF; acute kidney injury—according to
the more recent classification) is emerging as a public health
problem. Despite major advances in supportive therapy, the
mortality and morbidity among patients remain dismally
high. In the attempt to yield innovative interventions foster-
ing the limited capability of regeneration of the kidney,
several studies have tested stem cell-based technology mainly
employing mesenchymal stem cells (MSC) of different
origins. The results of this approach provide the exciting pro-
spect of a powerful treatment to repair acutely damaged
organs by virtue of the unique MSC tropism for the damaged
tissue, as well as their paracrine action. In the present review,
we discuss the mechanisms underlying the regenerative pro-
cesses triggered by MSC therapy in preclinical models of ARF
by analysing modalities of cell-to-cell communication
through the release of soluble factors and microvesicles/exo-
somes by MSC into the damaged renal tissue. Key receptors
involved in MSC homing, engraftment and survival at the
sites of injury are also elucidated. A translation of basic dis-
coveries of MSC biology into effective care is still limited to
the preliminary data of a phase I clinical trial, and further
studies are needed to definitively assess the efficacy of MSC-
based therapy in humans.

THE PERIL OF EARLY STEM CELL THERAPY

More than 12 years ago, ‘Science’ dedicated its breakthrough
issue to the discovery of stem cell potential to cure diseases of
multiple organs. So far, apart from haematopoietic stem cell
(HSC) transplantation for the treatment of haematological
disorders and some dermal and corneal indications, essen-
tially all other approaches based on stem cells remained

experimental medical research. On the other hand, the des-
peration of patients who find no hope for the cure of their
diseases allows the proliferation of institutions that perform
unproven, probably ineffective, stem cell-based therapies.
Sponsored websites promise a cure for diseases for which no
effective treatments exist emphasizing the benefit of stem
cells while playing down the potential risks of the procedure.
The presumption of efficacy of stem cell-based therapy
flaunted by different media leads to administering interven-
tions outside of controlled clinical trials that threaten patients
and undermine confidence in medical research [1]. The
pressure of finding new therapeutic indications for stem cells
together with the attraction on their regenerative potential
has stimulated early practice in patients with cardiac injury
and left ventricular dysfunction, which remain the major
causes of morbidity and mortality worldwide [2]. Although
the perspective of regeneration of cardiac tissue provided an
initial challenge for cell-based therapies [3], subsequent
studies in animals have questioned the ability of stem cells to
effectively generate cardiomyocytes [4, 5]. More generally, the
enthusiasm of the early trials in patients with heart failure
was tempered somewhat by the modest size of the outcome
[6]. Failure of clinical studies might derive from the lack of
robust data in animal models that would have helped address
a number of key issues including the underlying mechanism
of protection. Before jumping into clinical practice, many
questions remain unanswered regarding the best cell type, the
source of cells, the route of delivery, the timing of the inter-
vention and the number of cells needed. Despite the fact that
human biology is only partially predictable from animal
models, pre-clinical studies remain a key element in the
scientific development of novel therapies such as stem cell
treatment. The story of stem cells as a mean to cure acute
kidney injury (AKI) started in the last decade from studies in
experimental animals mainly carried out with mesenchymal
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stem cells (MSC). The aim of the present review is to describe
the key findings of protection from AKI achieved by stem cell
therapy, the mechanism underlying the beneficial effect and
the possible translation in therapeutic approaches for acute
renal failure (ARF). The review will focus on ARF rather than
AKI since cell therapy at present does apply to the former
but not to minor abnormalities of the kidney encompassed
by the high spectrum of renal injuries.

WHY THE CHOICE OF MSC?

MSC represent an important component of the haematopoie-
tic niche in the bone marrow (BM), where they contribute to
regulating self-renewal, maturation and recruitment of HSCs
to the vascular compartment, via cell-to-cell interaction and
local release of specific cytokines, chemokines and growth
factors [7, 8]. MSC comprise approximately 0.01% of BM
cells and are operationally defined as plastic adherent. They
represent a heterogeneous population of multipotent stem
cells that can differentiate into mesodermal lineages such as
adipocytes, chondrocytes and osteocytes, however, the evi-
dence that they can transdifferentiate into tissue-specific cell
types of ectodermal and endodermal lineages, both in vitro
and in vivo, is still controversial. MSC, originally identified in
the BM [9], were also found in other tissues including per-
ipheral blood, connective tissue, adipose tissue, skeletal
muscle, umbilical cord wall/blood and amniotic fluid [10,
11]. Recent studies indicated the presence of perivascular
cells co-expressing the markers of both pericytes and MSC in
multiple organs [12] including the kidney [13], suggesting
their functional role in the regulation of vascular stability.
Despite established functional differences among tissues of
origin, there is general consensus that cultured human MSC
express variable levels of CD105, CD73, CD44, CD90,
CD271, CD166, Stro-1 and lack expression of haematopoietic
markers, including CD14, CD11b and CD45 [7, 8]. MSC
possess a powerful immunomodulatory activity highlighting
the potential for clinical translation in solid organ transplan-
tation [14]. Indeed, they strongly inhibit T-cell proliferation
by cell-to-cell interaction, release of soluble factors in in vitro
and in vivo settings and exert similar inhibitory effect on B
cells, dendritic cells, natural killer cells and on cells of innate
immunity [14].

MSC CONTRIBUTE TO THE REPAIR OF AKI

Pioneering pre-clinical studies have described a role of BM-
derived stem cells in renal physiological cell turnover and
regeneration of several compartments of the kidney including
tubular cells, podocytes [15], mesangial cells [16] and endo-
thelial cells of the glomerular capillary [17]. Based on the bio-
logical properties of MSC in the BM niche, their regenerative
ability and tropism for damaged tissues in a wide array of
disorders [7, 18], the therapeutic use of MSC has been inves-
tigated in animal models of ARF in which the quest for effec-
tive treatments has been largely unsuccessful.

Our group was the first to document that an infusion of
murine BM-MSC at the concentration of 2 × 105 cells/mouse
in mice with ARF induced by the nephrotoxic anti-cancer
drug cisplatin protected animals from renal function impair-
ment and tubular injury [19, 20]. The temporary low engraft-
ment of BM-MSC to the site of injury in the proximity of
peritubular areas and not within tubular epithelium reason-
ably ruled out that BM-MSC repair renal injury via transdif-
ferentiation into renal cells. Finding that in mice with ARF,
BM-MSC engrafted the kidney and markedly increased the
number of resident tubular cells positive for Ki-67 indicates
renal cell proliferation as a key step of kidney repair locally
triggered by stem cells [19, 20]. In the clinical perspective,
MSC obtained from human BM aspirates were tested in im-
munodeficient nonobese diabetic/severe combined immuno-
deficiency (NOD/SCID) mice with cisplatin-induced ARF
[21]. Pilot experiments indicated the dose of 5 × 105 human
BM-MSC per mouse as the most effective quantity of cells
that could be injected without adverse effects. Human BM-
MSC reached the injured renal tissue, although in a limited
number, where they preserved renal function and tubular in-
tegrity, leading to a prolongation of animal survival in respect
to mice given saline (Table 1). Treatment with human BM-
MSC promoted the proliferation and counteracted apoptosis
of proximal tubular cells besides preserving microvascular in-
tegrity and contributing to ameliorating renal tissue oxygen-
ation [21].

In search of new and more accessible sources of MSC for
renal repair, cells derived from human adipose tissue (hAD)
as an alternative to BM were investigated. The infusion of
hAD-MSC isolated from two donors into NOD/SCID mice
with ARF failed to improve renal function, evaluated as blood
urea nitrogen at 4 days (hAD-MSC1, 121 ± 19 and hAD-
MSC2, 125 ± 17 versus saline, 100 ± 17 mg/dL). In parallel,
hAD-MSC-treated mice showed tubular alterations consisting
of casts [hAD-MSC1, 4.8 ± 3.6 and hAD-MSC2, 11.2 ± 2
versus saline, 4.4 ± 3.8 number of casts/high power field
(HPF)], nuclear fragmentation and necrosis (hAD-MSC1,
8.1 ± 3 and hAD-MSC2, 17.2 ± 1.7 versus saline, 8 ± 4
number of necrotic tubuli/HPF) comparable with those ob-
served in mice given saline.

Next, the efficacy of stem cells derived by human fetal
tissues [22], including umbilical cord blood (hCB) and am-
niotic fluid (hAF), was evaluated. Human CB-MSC share
morphological characteristics, immunophenotype and multi-
potency with MSC of BM origin [23, 24]; however, gene
expression profile revealed higher expression of genes in-
volved in matrix remodelling via metalloproteinases and in
angiogenesis in hCB-MSC [23]. Systemic infusion of hCB-
MSC (5 × 105 cells/animal) into NOD/SCID mice with ARF-
protected animals from renal function impairment and
tubular injury; however, the effects of hCB-MSC on animal
survival were considerably stronger than that observed with
human bone marrow (hBM) MSC (Table 1) [24]. Human
AFS cells represent a type of stem cells described to possess
high plasticity and expansion potential that share character-
istics of both embryonic and adult stem cells [25]. Indeed,
these cells immunoisolated for c-Kit express embryonic
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markers such as OCT4 and SSEA4 and several MSC markers
including CD90, CD105, CD73 and CD44 [26]. Cisplatin
NOD/SCID mice infused with hAFS cells exhibited improve-
ment in renal function and decreased tubular damage. The
effect on animal survival observed with human AFS cells was
comparable with that of hBM-MSC (Table 1). These findings
suggest that hCB-MSC and to a lesser extent hBM-MSC and
hAFS cells, hold potential for successful application in
human ARF.

PARACRINE MECHANISMS OF MSC THERAPY
IN ARF

Complementary studies to those on survival have tried to
better highlight the mechanisms possibly involved in regenera-
tive processes evoked by MSC therapies in the injured kidney.
In ischaemia-reperfusion (IR) injury, rat BM-MSC, which
transiently engrafted the damaged renal tissue, exerted a ben-
eficial effect on renal function and tubular damage via the pro-
duction of anti-apoptotic, pro-mitogenic and vasculotropic
factors [27, 28]. In these experiments, animals that received
BM-MSC had decreased expression in the kidney of interleu-
kin 1 ß, tumor necrosis factor α and interferon γ coupled with
the upregulation of anti-inflammatory cytokines and growth
factors as IL10, basic fibroblast growth factor (bFGF) trans-
forming growth factor α and the anti-apoptotic Bcl-2 [27].
The concept that MSC exert renoprotection via a local para-
crine action is supported by data that repeated injections of
BM-MSC-conditioned medium in mice with cisplatin-induced
ARF limited renal injury, apoptosis and increased animal sur-
vival [29]. That soluble factors are responsible for the renopro-
tective effect of MSC also rests on in vitro data showing that
BM-MSC co-cultured, but physically separated, with cisplatin-
damaged proximal tubular cells, elicited mitogenic and anti-
apoptotic effects on tubular cells [20]. Among growth factors,
insulin-like growth factor–1 (IGF-1) and vascular endothelial
growth factor (VEGF) have been described to be responsible
for the renal regenerative processes by BM-MSC in animals
with ARF as documented by gene-silencing experiments [20,
30]. Knocking down IGF-1 expression in murine BM-MSC by
siRNA before infusion limited cell-protective effects on renal
function and tubular damage in mice with cisplatin-induced
ARF [20]. Similarly, VEGF silencing reduced the effectiveness

of rat BM-MSC on renal functional recovery and survival in IR
injury model [30].

Finding relatively few MSC engrafting the injured tissue in
the face of robust functional recovery has raised the interest
to investigate additional mechanisms that could act in
concert with the release of soluble factors to explain MSC’s
renoprotective effect. MSC-derived microvesicles (MVs) and
exosomes (Exo) have been indicated as a new mechanism of
cell-to-cell communication that allows the transfer of func-
tional proteins or genetic material via mRNAs and micro-
RNAs upon cell activation [31, 32]. MVs released from the
surface of activated cells are relatively large (100 nm to 1 μm
diameter) in respect to Exo, smaller membrane fragments
(30–90 nm diameter), which originate from the endosomal
compartment after fusion of secretory granules with the
plasma membrane [31, 32]. A recent study compared the
effect of a low number of human BM-MSC (7.5 × 104 MSC/
mouse) with that of MVs generated by this very dose of BM-
MSC (accounting for 15 μg proteins) in mice with glycerol-
induced ARF [33]. Systemic injection of either MVs or cells
promoted a comparable regenerative programme in damaged
renal tissue [33]. This study characterized the transcripts
present in MVs and demonstrated the shuttling in vitro and
in vivo of two mRNAs encoding proteins involved in prolifer-
ation. Furthermore, another report unravelled a new mechan-
ism underlying the beneficial effect of BM-MSC-derived Exo
on proximal tubular cells exposed to cisplatin. In these exper-
iments, 1 × 106 human BM-MSC released a smaller amount
of Exo (0.5–2 μg proteins) in respect to that previously de-
scribed [33]. The repair of cisplatin-damaged proximal
tubular cells resulted from a combined trophic effect of IGF-1
released by BM-MSC and the transfer of mRNA of the corre-
sponding IGF-1 receptor via Exo, which potentiates tubular
cell sensitivity to the growth factor [34] (Figure 1). The possi-
bility to use MVs derived from MSC as strategy to enhance
survival in ARF and to protect against IR injury has been
proposed [35].

STRATEGIES TO ENHANCE MSC HOMING,
SURVIVAL AND EFFICACY

Despite the fact that a large body of evidence substantiates
the efficacy of MSC therapy in ameliorating the outcome of

Table 1. Comparative effect of stem cells of different origin in experimental ARF

Treatment Blood urea nitrogen (mg/dL) Renal histologya Survivalb Refs.

Saline >140 Damaged 0 [21, 24, 26]

Bone marrow-MSC 63 ± 5 Preserved 50 [21]

Cord blood-MSC 58 ± 7 Preserved 86 [24]

Amniotic fluid-SC cKit+ 81 ± 3 Preserved 56 [26]
aOn day 4 from cisplatin injection.
bOn day 7 from cisplatin injection.
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ARF in different experimental models induced by cisplatin
[19, 21], glycerol [33, 36] and IR injury [27, 37], one may
wonder whether migration and the low survival of MSC in
the damaged tissues might possibly hamper the potential
benefit of cell transplantation. The process of MSC engraft-
ment at the site of injury is regulated by numerous chemotac-
tic receptors [38, 39]. In the kidney following acute damage,
the expression of stromal cell-derived factor (SDF)-1 is upre-
gulated within the kidney and the axis SDF-1/CXCR4 has
been proposed to play a pivotal role in MSC engraftment [40,
41]. CD44 represents another important candidate expressed
by MSC that regulates their trafficking through the inter-
action with hyaluronic acid (HA), which is significantly upre-
gulated during ARF [42]. Data that BM-MSC isolated from
CD44 knockout mice lost the ability to migrate into the renal
injured tissue and did not accelerate morphological and func-
tional recovery in mice with glycerol-induced ARF [42]
clearly support a role of CD44/HA pathway in MSC
migration.

Strategies are being developed to maximize the MSC
capacity to migrate into the injured tissue, to survive and to
enhance their regenerative activity through cell pre-con-
ditioning with growth factors, cytokines and hypoxia [41, 43–
45] or genetic modification [46–50], before in vivo cell infu-
sion. Ex vivo pre-conditioning of BM-MSC with IGF-1 in-
creased stem cell motility and engraftment in renal tissue of
cisplatin mice with ARF, thus enhancing their protective
effect on renal function and tubular injury [41]. Stem cell
exposure to IGF-1 increased IGF-1 production, enhanced the
surface expression of CXCR4, one of the major players of
BM-MSC mobilization, and reduced BM-MSC susceptibility
to oxidative damage [41]. Another growth factor, glial cell
line-derived neurotrophic factor (GDNF), a member of the
TGF family, has been described to exert a cytoprotective
activity against oxidative stress-induced apoptosis in cultured
kidney-derived MSC [43]. Exposure of hAFS cells with
GDNF markedly increased their engraftment in renal tissues

of mice with ARF fostering their paracrine activity and reno-
protective effect [26]. Thus, cultured hAFS cells in response
to GDNF expressed higher levels of CD44, CXCR4 and
CX3CR1 on cell surface and further produced IL-6, and
VEGF and SDF-1 [26]. Moreover, pre-treatment of rat BM-
MSC with the pineal hormone melatonin improved their sur-
vival, proangiogenic/mitogenic activity and efficacy in rats
with IR injury possibly by enhancing bFGF, hepatocyte
growth factor (HGF) production and antioxidant enzyme
expression [44]. Genetic modification of MSC with retroviral
vectors encoding homing receptors such as CXCR4 or the
VLA-4 subunit has been recently used to enhance migratory
behaviour of MSC [46, 47]. Adenovirus transduction with the
serine protease kallikrein rendered BM-MSC more resistant
to oxidative stress-induced apoptosis and in vivo enhanced
protection against ischaemic renal injury by inhibiting
inflammation [48]. Treatment with genetically modified
human embryonic MSC that produced four-fold higher levels
of VEGF further enhanced renoprotection against cisplatin-
induced ARF in respect to untransfected cells [49]. Further-
more, hCB-MSC overexpressing HGF showed enhanced
therapeutic effects when infused to animals with IR injury as
compared with untreated cells [50].

CLINICAL STUDIES

Despite experimental data suggest that MSC promote renal
recovery by acting on various pathways of injury operating in
ARF more effectively than targeted pharmacological thera-
pies, the translation of pre-clinical approaches into humans is
still limited. In this context, a food and drug administration-
approved phase I clinical trial (NCT00733876) is ongoing
with the aim to investigate the safety and efficacy of escalating
doses of allogeneic MSC administered to open-heart surgery
patients at high risk of post-operative ARF due to underlying
chronic kidney disease, advanced age, diabetes mellitus and

F IGURE 1 : Horizontal transfer of mRNA for IGF-1 receptor (R) via MSC-derived Exo and expression of the corresponding protein in
damaged proximal tubular cells potentiate renal cell sensitivity to locally produced IGF-1.
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congestive heart failure. Preliminary data show that renal
function was well preserved post-operatively for up to 16
months and none of the patients required haemodialysis,
whereas 20% of case controls developed ARF. The length of
hospital stay and readmission rates in study patients were
reduced by 40%. Infusion of allogeneic MSC was safe as no
adverse events were observed to be related to this novel
therapy [51, 52].

Based on experimental studies on cisplatin-induced ARF,
our group has designed an ongoing pilot, explorative study to
test the feasibility and safety of systemic infusion of donor ex
vivo-expanded MSC to repair the kidney and to improve
function in patients with solid organ cancer who develop
ARF after chemotherapy with cisplatin (ClinicalTrials.gov
NCT 01275612). The effect of escalating three doses of donor
ex vivo-expanded MSC given as a single intravenous infusion
will be first tested in three patients. If the results show efficacy
on renal function with any of the employed doses and the
procedure is safe, the number of treated patients will be up-
graded to eight subjects. One of the problems related to the
identification of cisplatin-treated patients who are at in-
creased risk of nephrotoxicity and might benefit most by cell-
based intervention is the availability of early markers of
renal/tubular injury. In this context, comparative analysis of
serum and/or urinary neutrophil gelatinase-associated lipoca-
lin (NGAL) levels as well as serum creatinine concentration
in a cohort of patients administered cisplatin revealed that
urinary NGAL is an early marker of renal dysfunction since
its increase precedes the rise of serum creatinine [53].

Altogether the data on the safety of MSC therapy,
although preliminary, are encouraging, however, further clini-
cal trials devoted to testing the efficacy of this intervention
are needed. The time is mature for the kidney to move to
humans.
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